If x+y+z=xyz, prove that x+y1−xy+y+z1−yz+z+x1−zx=x+y1−xy⋅y+z1−yz⋅z+x1−zx.
Open in App
Solution
As above A+B+C=0 or nπ tanA+tanB+tanC=tanAtanBtanC ..(1) Now A=π−(B+C) ∴tanA=−tan(B+C) or tanA=−tanB+tanC1−tanBtanC=−(y+z1−yz) etc. Now put in (1) and cancel −ive sign from both sides.