If x+y+z=xyz, prove that 2x1−x2+2y1−y2+2z1−z2=rx1−x2py1−y2qz1−z2 where p,r,q are constants. Find value of pqr
Open in App
Solution
Let x=tanA, y=tanB and z=tanC Now x+y+z=xyz ⇒tanA+tanB+tanC=tanAtanBtanC ⇒A+B+C=nπ or 2A+2B+2C=2nπ or tan2A+tan2B+tan2C=tan2Atan2Btan2C or =2tanA1−tan2A+2tanB1−tan2B+2tanC1−tan2C=2tanA1−tan2A2tanB1−tan2B2tanC1−tan2C ⇒2x1−x2+2y1−y2+2z1−z2=2x1−x22y1−y22z1−z2 Ans: 8