If x + y + z = xyz. Then
3x−x31−3x2 + 3y−y31−3y2 + 3z−z31−3z3 =
It is given that x + y + z = xyz
We know in a triangle ABC, tan A + tan B + tan C = tan A .tan B . tan C.
Instead of trying to simplify the given expression, we can use the substitution
x = tan A, y = tan B & z = tan C to solve this in an easy method.
If x = tan A
Then,
3x−x31−3x2 = 3tanA−tan3A1−3tan2A = tan 3A
Similarly, 3y−y31−3y2 = 3tanB−tan3B1−3tan2B = tan 3B
and 3z−z31−3z2 = 3tanC−tan3C1−3tan2C = tan 3C
So,3x−x31−3x2 + 3y−y31−3y2 + 3z−z31−3z2 = tan 3A + tan 3B + tan 3C
if A + B + C = 180
3A + 3B + 3C = 3 × 180= 540
This angle is equivalent to 540-360 =180.
So the three angles 3A, 3B and 3C satisfy the same condition, that the sum of the angles is equal to 180. We can directly say tan 3A + tan 3B + tan 3C = tan 3A . tan 3B . tan 3C
We will try to arrive at this to make sure it was not blunder to write 540 is equivalent to 180.
Taking tan on both sides
3A + 3B + 3C = 3 × 180= 540
3A + 3B =3π - 3C
tan (3A + 3B) = tan (3π - 3C) = tan (π - 3C)
tan3A+tan3B1−tan3Atan3B = -tan3C
tan 3A + tan 3B = - tan 3C + tan 3A. tan3B . tan3C
tan 3A + tan 3B + tan 3C = tan 3A . tan 3B . tan3C
So, 3tanA−tan3A1−3tan2A + 3tanB−tan3B1−3tan2B + 3tanC+tan3C1−3tan2C
= 3tanA−tan3A1−3tan2A × 3tanB−tan3B1−3tan2B × 3tanC−tan3C1−3tan2C
Replace tan A = x, tan B = y, tanC = z
3x−x31−3x2 + 3y−y31−3y2 + 3z−z31−3z3 = 3x−x31−3x2 × 3y−y31−3y2 × 3z−z31−3z2