wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If x + y + z = xyz. Then

3xx313x2 + 3yy313y2 + 3zz313z3 =


A

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

0

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

+ +

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A


It is given that x + y + z = xyz

We know in a triangle ABC, tan A + tan B + tan C = tan A .tan B . tan C.

Instead of trying to simplify the given expression, we can use the substitution

x = tan A, y = tan B & z = tan C to solve this in an easy method.

If x = tan A

Then,

3xx313x2 = 3tanAtan3A13tan2A = tan 3A

Similarly, 3yy313y2 = 3tanBtan3B13tan2B = tan 3B

and 3zz313z2 = 3tanCtan3C13tan2C = tan 3C

So,3xx313x2 + 3yy313y2 + 3zz313z2 = tan 3A + tan 3B + tan 3C

if A + B + C = 180

3A + 3B + 3C = 3 × 180= 540

This angle is equivalent to 540-360 =180.

So the three angles 3A, 3B and 3C satisfy the same condition, that the sum of the angles is equal to 180. We can directly say tan 3A + tan 3B + tan 3C = tan 3A . tan 3B . tan 3C

We will try to arrive at this to make sure it was not blunder to write 540 is equivalent to 180.

Taking tan on both sides

3A + 3B + 3C = 3 × 180= 540

3A + 3B =3π - 3C

tan (3A + 3B) = tan (3π - 3C) = tan (π - 3C)

tan3A+tan3B1tan3Atan3B = -tan3C

tan 3A + tan 3B = - tan 3C + tan 3A. tan3B . tan3C

tan 3A + tan 3B + tan 3C = tan 3A . tan 3B . tan3C

So, 3tanAtan3A13tan2A + 3tanBtan3B13tan2B + 3tanC+tan3C13tan2C

= 3tanAtan3A13tan2A × 3tanBtan3B13tan2B × 3tanCtan3C13tan2C

Replace tan A = x, tan B = y, tanC = z

3xx313x2 + 3yy313y2 + 3zz313z3 = 3xx313x2 × 3yy313y2 × 3zz313z2


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Substitution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon