The correct option is A (2x1+x2)(2y1+y2)(2z1+z2)
Given : x+y+z=xyz
Let us assume that, x=tanA,y=tanB,z=tanc
Now, x+y+z=xyz⇒tanA+tanB+tanC=tanAtanBtanC
and we know that this expression holds true only when A+B+C=π
⇒2A+2B+2C=2π
⇒tan(2A+2B+2C)=tan2π
⇒tan(2A+2B+2C)=0 [∵tan2π=0]
⇒tan2A+ tan2B+tan2C−tan2Atan2Btan2C1−tan2Atan2B−tan2Btan2C−tan2Atan2C=0 [∵tan(A+B+C)=tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanBtanC−tanAtanC]
⇒tan2A+ tan2B+tan2C−tan2Atan2Btan2C=0
⇒tan2A+ tan2B+tan2C=tan2Atan2Btan2C
⇒2tanA1−tan2A+2tanB1−tan2B+2tanC1−tan2C=(2tanA1−tan2A)(2tanB1−tan2B)(2tanC1−tan2C) [∵tan2θ=2tanθ1−tan2θ]
⇒2x1−x2+2y1−y2+2z1−z2=(2x1−x2)(2y1−y2)(2z1−z2)