The correct option is
B 4xyzLet
x=tanA,y=tanB and
z=tanCGiven x+y+z=xyz
⇒tanA+tanB+tanC=tanAtanBtanC
⇒tanA+tanB=−tanC+tanAtanBtanC
=−tanC(1−tanAtanB)⇒tanA+tanB1−tanAtanB=−tanC⇒tan(A+B)=tan(−C)
⇒A+B=nπ−C⇒A+B+C=nπ⇒2A+2B+2C=2nπ
⇒tan(2A+2B+2C)=tan2nπ=0
⇒[tan2A+tan2B+tan2C−tan2Atan2Btan2C][1−tan2Atan2B−tan2Btan2C−tan2Ctan2A]=0
⇒tan2A+tan2B+tan2C=tan2Atan2Btan2C⇒2tanA1−tan2A.2tanB1−tan2B.2tanC1−tan2C
=2tanA1−tan2A.2tanB1−tan2B.2tanC1−tan2C
Hence, on putting tanA=x,tanB=y,tanC=z we get
2x1−x2+2y1−y2+2z1−z2=2x1−x2.2y1−y2.2z1−z2
On multiplying both sides by 12(1−x2)(1−y2)(1−z2), we get
x(1−y2)(1−z2)+y(1−z2)(1−x2)+z(1−x2)(1−y2)=4xyz