If x2≠nπ+1, n∈N, then ∫x2sinx2-1-sin2x2-12sinx2-1+sin2x2-1dx is equal to:
lncosx2-12+c
12lncosx2-12+c
lnsecx2-12+c
12lnsecx2-12+c
Explanation for the correct option:
∫x2sinx2-1-sin2x2-12sinx2-1+sin2x2-1dx
Let t=x2-1
⇒dtdx=2x⇒dt2=xdx
So,
∫x2sinx2-1-sin2x2-12sinx2-1+sin2x2-1dx=12∫2sint-sin2t2sint+sin2tdt=12∫2sint-2sintcost2sint+2sintcostdt[bysin2x=sinxcosx]=12∫2sint1-cost2sint1+costdt=12∫1-cost1+costdt=12∫2sin2t22cos2t2dt[by2sin2x=1-cos2xand2cos2x=1+cos2x]=12∫tant2dt=logsect2+c=logsecx2-12+c
Hence, option C is correct.
Q14. If α,β are the zeros of polynomial fx=x2-px+1-c then α+1β+1 is equal to: