1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Basic Trigonometric Identities
If x sinθ-y b...
Question
If
x
a
sinθ
-
y
b
cosθ
=
1
and
x
a
cosθ
+
y
b
sinθ
=
1
,
prove that
x
2
a
2
+
y
2
b
2
=
2
.
Open in App
Solution
We have
(
x
a
sin
θ
−
y
b
cos
θ
)
=
1
Squaring both side, we have:
(
x
a
sin
θ
−
y
b
cos
θ
)
2
=
(
1
)
2
⇒
(
x
2
a
2
sin
2
θ
+
y
2
b
2
cos
2
θ
−
2
x
a
×
y
b
sin
θ
cos
θ
)
=
1
...
(
i
)
Again,
(
x
a
cos
θ
+
y
b
sin
θ
)
=
1
Squaring both side, we get:
(
x
a
cos
θ
+
y
b
sin
θ
)
2
=
(
1
)
2
⇒
(
x
2
a
2
cos
2
θ
+
y
2
b
2
sin
2
θ
+
2
x
a
×
y
b
sin
θ
cos
θ
)
=
1
...
(
ii
)
Now, adding
(
i
)
and
(
ii
)
,
we
get
:
(
x
2
a
2
sin
2
θ
+
y
2
b
2
cos
2
θ
−
2
x
a
×
y
b
sin
θ
cos
θ
)
+
(
x
2
a
2
cos
2
θ
+
y
2
b
2
sin
2
θ
+
2
x
a
×
y
b
sin
θ
cos
θ
)
=
2
⇒
x
2
a
2
sin
2
θ
+
y
2
b
2
cos
2
θ
+
x
2
a
2
cos
2
θ
+
y
2
b
2
sin
2
θ
=
2
⇒
(
x
2
a
2
sin
2
θ
+
x
2
a
2
cos
2
θ
)
+
(
y
2
b
2
cos
2
θ
+
y
2
b
2
sin
2
θ
)
=
2
⇒
x
2
a
2
(
sin
2
θ
+
cos
2
θ
)
+
y
2
b
2
(
cos
2
θ
+
sin
2
θ
)
=
2
⇒
x
2
a
2
+
y
2
b
2
=
2
[
∵
sin
2
θ
+
cos
2
θ
=
1
]
∴
x
2
a
2
+
y
2
b
2
=
2
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
If
x
a
cos
θ
+
y
b
sin
θ
=
1
and
x
a
sin
θ
-
y
b
cos
θ
=
1
,
prove
that
x
2
a
2
+
y
2
b
2
=
2