The correct option is C yx
xmyn=(x+y)m+nTaking log both sides, we get⇒m log x+n log y=(m+n) log (x+y)Differentiating both sides w.r.t. x, we get⇒mx+nydydx=(m+n)(x+y)(1+dydx)⇒(ny−m+nx+y}dydx=m+nx+y−mx⇒(nx+ny−my−nyy(x+y)}dydx=(mx+nx−mx−my(x+y)x}⇒nx−myy(x+y)⋅dydx=nx−myx(x+y)⇒dydx=yx