If xpyq=(x+y)p+q, then dydx=
yx
-yx
xy
-xy
Explanation for the correct option:
xpyq=(x+y)p+q
By taking log on the both sides.
plogx+qlogy=p+qlogx+y
Differentiate w.r.t x
p1x+q1ydydx=p+q1x+y×1+dydx⇒px+qydydx=p+qx+y+p+qx+ydydx⇒px-p+qx+y=p+qx+y-qydydx⇒px+py-px-qxxx+y=py+qy-qx-qyyx+ydydx⇒py-qxxx+y=py-qxyx+ydydx⇒dydx=yx
Hence, option (A) is correct.
Factorise: 2xp+4xq−3yp−6yq