If xy2=4 and log3(log2x)+log1/3(log1/2y)=1, then x equals
64
log3(log2x)+log1/3(log1/2y)=1log3log2x−log3log12y=1log3log2xlog12y=1⇒log2xlog12y=3⇒log2x−log2y=3log2x=−3log2y →(1)xy2=4log2x+2log2y=2log22log2y=2−log2x2 →(2)
(2) in (1)log2x=−3(2−2log2x2)2log2x=−6+3log2x6=log2xx=26x=64