The correct option is D −25
Given,
xy=Asinx+Bcosx .... (i)
On differentiating w.r.t. x, two times, we get
xdydx+y=Acosx−Bsinx .... (ii)
and xd2ydx2+dydx+dydx=−Asinx−Bcosx
⇒xd2ydx2+2dydx=−xy [from Eq. (i)]
⇒xd2ydx2+2dydx+xy=0
On Comparing with xd2ydx2−5adydx+xy=0, we get
−5a=2⇒a=−25