Put x=tanα etc.
so that 1−S2=0, given.
∴tan(α+β+γ)=S1−S31−S2=∞
∴α+β+γ=π2
Also x1+x2=tanαsec2α=sinαcosα=12sin2α
Hence we have to prove that
12[sin2α+sin2β+sin2γ]=2secαsecβsecγ
or sin2α+sin2β+sin2γ=4cosαcosβcosγ
when α+β+γ=π/2
or sin(β−γ)=sin{(π/2)−α}=cosα
Now above relation can be easily proved.