wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If xyz=1 , then show that (1+x+y​​​​​​-1)-1 + (1+y+z​​​​​​-1)-1 + (1+z+x​​​​​​-1)-1 =1

Open in App
Solution

(1 + x + y-1)-1 +(1 + y + z-1)-1 + (1 + z + x-1)-1
= (1 + x + 1/y)-1 +(1 + y + 1/z)-1 + (1 + z + 1/x)-1
= (1 + x + xz)-1 +(1 + y + 1/z)-1 + (1 + z + 1/x)-1 [xyz = 1, or xz = 1/y]
= (1 + x + xz)-1 +{(z + yz + 1)/z}-1 + {(x + xz + 1)/x}-1
= (1 + x + xz)-1 +{(z + 1/x + 1)/z}-1 + {(x + xz + 1)/x}-1 [xyz = 1, or yz = 1/x]
= (1 + x + xz)-1 +{(xz + 1 + x)/xz}-1 + {(x + xz + 1)/x}-1
= 1 / (1 + x + xz) + xz / (1 + x + xz) + x / (x + xz + 1)
= (1 + xz + x) / (1 + x + xz)
= 1

flag
Suggest Corrections
thumbs-up
26
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Linear Equation in Two Variables
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon