If y>0, then prove that logey=2[(y−1y+1)+13(y−1y+1)3+15(y−1y+1)5+...] and calculate loge2 to three places of decimal.
Open in App
Solution
We know x=y−1y+1, we get loge⎛⎜⎝1+y−1y+11−y−1y+1⎞⎟⎠=2[y−1y+1+13(y−1y+1)2+15(y−1y+1)5+...] logey=2[y−1y+1+13(y−1y+1)2+15(y−1y+1)5+...] putting y=2, we get loge2=2[13+13(13)3+15(15)5+...]=23[1+(13)3+15(13)4+...]=0.693