If y=14u4, u=23x3+5, then dydx=
x2272x3+153
2x272x3+53
2x2272x3+153
None of these
Explanation for the correct option.
Step 1: Differentiate y with respect to u
y=14u4⇒dydu=144u3=u3
Step 2: Differentiate u with respect to x
u=23x3+5⇒dudx=233x2+0=2x2
Step 3: Find dydx.
dydx=dydu×dudx=u3×2x2=23x3+53×2x2=2x3+1533×2x2=1272x3+153×2x2=2x2272x3+153
Hence, option C is correct.