wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y1/4+y1/4=2x, and (x21)d2ydx2+αxdydx+βy=0, then |αβ| is equal to

Open in App
Solution

y1/4+y1/4=2x
y1/22xy1/4+1=0
y1/4=2x±4x242
y=(x±x21)4
Differentiate w.r.t. x, we get
dydx=4(x±x21)3(1±xx21)
dydx=4(x±x21)4x21
dydx=4yx21
Squaring on both the sides, we get
(x21)(dydx)2=16y2
Differentiate w.r.t. x, we get
(x21)×2(dydx)(d2ydx2)+2x(dydx)2=32ydydx
Dividing by 2dydx, we get
(x21)d2ydx2+xdydx=16y
(x21)d2ydx2+xdydx16y=0
α=1,β=16
|αβ|=17

flag
Suggest Corrections
thumbs-up
54
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Applications of Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon