y1/4+y−1/4=2x
⇒y1/2−2xy1/4+1=0
⇒y1/4=2x±√4x2−42
⇒y=(x±√x2−1)4
Differentiate w.r.t. x, we get
dydx=4(x±√x2−1)3(1±x√x2−1)
⇒dydx=4(x±√x2−1)4√x2−1
⇒dydx=4y√x2−1
Squaring on both the sides, we get
(x2−1)(dydx)2=16y2
Differentiate w.r.t. x, we get
(x2−1)×2(dydx)(d2ydx2)+2x(dydx)2=32ydydx
Dividing by 2dydx, we get
(x2−1)d2ydx2+xdydx=16y
⇒(x2−1)d2ydx2+xdydx−16y=0
⇒α=1,β=−16
∴|α−β|=17