We have,
y=1+x1!+x22!+x33!+......
y=1+x1!+x22!+x33!+......+xn−1(n−1)!+xnn!
On differentiating both sides w.r.t x, we get
dydx=0+1+2x2!+3x23!+......+(n−1)xn−2(n−1)!+nxn−1n!
dydx=1+x+x22+......+xn−2(n−2)!+xn−1(n−1)!
dydx=1+x+x22+......+xn−2(n−2)!+xn−1(n−1)!+xnn!−xnn!
dydx=(1+x1!+x22+......+xn−2(n−2)!+xn−1(n−1)!+xnn!)−xnn!
dydx=y−xnn!
Hence, this is the answer.