If y = (1 + tan A)(1 - tan B) where A - B = π4, then
(y+1)y+1 is equal to
27
A - B = π4 ⇒ tan (A - B) = tan π4
⇒ tanA−tanB1+tanAtanB = 1
⇒ tan A - tan B - tan A tan B = 1
⇒ tan A - tan B - tan A tan B + 1 = 2
⇒ (1 + tan A)(1 - tan B) = 2 ⇒ y = 2
Hence, (y+1)y+1=(2+1)2+1=(3)3 = 27.
Trick Put suitable A and B as A - B = π4
i.e., A = π4, B = 0 ∴ (1 + tanπ4) (1 - tan00) = 2(1) = 2.