If y=(1+x)(1+2x)(1+3x), then the value of dydx at x=0 is
[1 mark]
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C6 y=(1+x)(1+2x)(1+3x)
At x=0,y=1
Taking ln on both sides, we get lny=ln(1+x)+ln(1+2x)+ln(1+3x)
Differentiating w.r.t. x, we get 1y⋅dydx=11+x+21+2x+31+3x ⇒dydx=y(11+x+21+2x+31+3x) ⇒dydx∣∣∣(0,1)=1(1+2+3)=6