If y=1-x+x22!-x33!+x44!-... then d2ydx2is equal to
-x
x
y
-y
Step 1. Find the value of dydx.
Differentiate both sides of the equation y=1-x+x22!-x33!+x44!-... with respect to x.
dydx=ddx1-x+x22!-x33!+x44!-...⇒dydx=0-1+2x2!-3x23!+4x34!-...⇒dydx=-1+x-x22!+x33!-...⇒dydx=-1-x+x22!-x33!+x44!y=1-x+x22!-x33!+x44!-..⇒dydx=-y...(1)
Step 2. Find the value of d2ydx2.
Now differentiate dydx=-y with respect to x.
d2ydx2=ddx(-y)=-dydx=-(-y)Usingequation1=y
Hence, the correct option is C.