If y2=p(x) is a polynomial of degree 3, then 2ddx[y3d2ydx2] is equal to
A
p"' (x) + p' x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
p''(x). p"'(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
p (x). p"' (x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C p (x). p"' (x) y2=P(x)⇒2yy′=p′(x)-----(i) ⇒(2y)y′′+y′(2y′)=p′′(x) ⇒2yy′′=p′′(x)−2(y′)2 ⇒2y3y′′=y2p′′(x)−2(yy′)2 ⇒2y3y′′=y2p′′(x)−2(p′(x)2)4[fromEq.(i)] ⇒2y3y′′=p(x)p′′(x)−12p′(x)2 ∴ddx(2y3y′′)=p(x)p′′′(x)+p′(x)p′′(x)−p′(x)p′′(x)=p(x).p′′′(x) ⇒2ddx(y3d2ydx2)=p(x)p′′′(x)