wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If y3y=2x, then prove that d2ydx2=24y(3y21)3. Hence, show that 9(x2127)d2ydx2+9xdydx=y.

Open in App
Solution

y3y=2x
differentiate on both sides w.r.t x
3y2dydxdydx=2
dydx=2(3y21)
Again differentiate on both sides w.r.t x
d2yd2x=2(3y21)2(6y)dydx
d2yd2x=12(3y21)2×2(3y21) (dydx=2(3y21))
d2yd2x=24y(3y21)3
9(x2127)d2ydx2+9xdydx=[9(y3y)2413](24y(3y21)3)+9(y3y)(3y21)
(27y654y4+27y2412)(24y(3y21)2)+9(y3y)(3y21)
=2y+6y(3y21)+9y39y(3y21)
=2y+3y(3y21)(3y21)
9(x2127)d2yd2x+9xdydx=y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon