If y=acos(logx)+bsin(logx)where a,bare parameters then x2y''+xy' equals to ?
y
-y
-2y
2y
Step 1: Given function
The Given function y=acos(logx)+bsin(logx)
Step 2: Differentiate the function with respect to x
y'=-asin(logx)×(1/x)+bcos(logx)×(1/x)y'=(1/x)[-asin(logx)+bcos(logx)]xy'=[-asin(logx)+bcos(logx)]
Differentiate again with respect to x
xy''+y'=-acos(logx)(1/x)–bsin(logx)(1/x)xy''+y'=(-1/x)[acos(logx)+bsin(logx)]xy''+y'=(-1/x)yxy''+y'=-y/x
Multiply with x
x2y''+xy'=-y
Hence option (B) is the correct answer