If y=Acosnx+Bsinnx, then d2ydx2 equals to?
n2y
-y
None of these
-n2y
Explanation for the correct option:
Finding the double deritvative:
Given that,
y=Acosnx+Bsinnx...1
Differentiate the above equation with respect to x,
dydx=-Ansinnx+Bncosnx[∵dcosaxdx=-asinx,dsinaxdx=acosx]
Differentiate again with respect to x.
d2ydx2=-An2cosnx–Bn2sinnx[∵d(cosax)dx=-asinx,d(sinax)dx=acosx]=-n2(Acosnx+Bsinnx)=-n2yfrom1
Hence, the correct option is D.