Assume x=py+qy2+ry3+⋯,
and substitute in the given series; thus
y=a(py+qy2+ry3+⋯)+b(py+qy2+⋯)2+c(py+qy2+⋯)3+⋯
Equating coefficients of like powers of y, we have
ap=1; whence p=1a.
aq+bp2=0; whence q=−ba3.
ar+2bpq+cp3=0; whence r=2b2a5−ca4.
Thus x=ya−by2a3+(2b2−ac)y3a5+⋯.