wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=btan1(xa+tan1yx), find dydx.

Open in App
Solution

y=btan1(xa+tan1yx)

yb=tan1(xa+tan1yx)

tanyb=xa+tan1yx

Differentiating both sides w.r.t. x, we get,
1bsec2(yb)dydx=1a+11+(yx)2×xdydxyx2

1bsec2(yb)dydx=1a+xdydxyx2+y2

dydx[1bsec2(yb)xx2+y2]=1ayx2+y2

Therefore,
dydx=1ayx2+y21bsec2(yb)xx2+y2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon