wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y1m+y1m=2x
Then prove that (x21)y2+xy1m2y=0

Open in App
Solution

Given 2x=y1m+y1m --------- (1)

Differentiating w.r.t x, 2=(1m)×y1m11m×y1m1(dydx) --------- (2)

2my=y1my1m dydx


Squaring this, 4m2y2=(dydx)2y2m+y2m2 --------- (3)

Squaring the (1),

2x=y1m+y1m

4x2=y2m+y2m+2

y2m+y2m=4x²2 ---- (4)

Substituting this in (1) above,

4m2y2=(dydx)2(4x24)
Dividing by 4, m2y2=(dydx)2(x21)

Again differentiating the above,

2m2y(dydx)=2(dydx)(d2ydx2)(x21)+2x(dydx)2

Dividing throughout by 2×dydx,

m2y=(x21)d2ydx2+xdydx

Thus (x21)(y2)+xy1=(m2)y

Or, (x21)(y2)+xy1(m2)y=0 --- Proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
x^2 - y^2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon