Given 2x=y1m+y−1m --------- (1)
Differentiating w.r.t x, 2=⎡⎣(1m)×y1m–1−1m×y−1m–1⎤⎦(dydx) --------- (2)
2my=⎡⎣y1m−y−1m⎤⎦ dydx
Squaring this, 4m2y2=(dydx)2⎡⎣y2m+y−2m−2⎤⎦ --------- (3)
Squaring the (1),
2x=y1m+y−1m
4x2=y2m+y−2m+2
y2m+y−2m=4x²−2 ---- (4)
Substituting this in (1) above,
4m2y2=(dydx)2(4x2−4)
Dividing by 4, m2y2=(dydx)2(x2−1)
Again differentiating the above,
2m2y(dydx)=2(dydx)(d2ydx2)(x2−1)+2x(dydx)2
Dividing throughout by 2×dydx,
m2y=(x2−1)d2ydx2+xdydx
Thus (x2−1)(y2)+xy1=(m2)y
Or, (x2−1)(y2)+xy1−(m2)y=0 --- Proved