The correct option is
B 2yy=x22+x√x2+12+ln√x+√x2+1
y=x×(x+√x2+12)+12ln(x+√x2+1)
Differentiating above equation with respect to x, we get
y′=x+√x2+12+x×(1+x√x2+12)+12×1+x√x2+1x+√x2+1
y′=x+√x2+12+x×(√x2+1+x2√x2+1)+12√x2+1
y′=x+√x2+12√x2+1×(√x2+1+x)+12√x2+1
y′=(x+√x2+1)22√x2+1+12√x2+1
y′=x2+x2+1+2x√x2+12√x2+1+12√x2+1
y′=x2+x2+1+2x√x2+1+12√x2+1
y′=2x2+2+2x√x2+12√x2+1
y′=x2+1+x√x2+1√x2+1
y′=x2+1√x2+1+x√x2+1√x2+1
y′=√x2+1+x
Therefore,
xy′+lny′=x×(√x2+1+x)+ln(√x2+1+x)
xy′+lny′=x√x2+1+x2+ln(√x2+1+x)
Multiplying and dividing the R.H.S by 2, we get
xy′+lny′=2×(x√x2+12+x22+12ln(√x2+1+x))
xy′+lny′=2×(x√x2+12+x22+ln(√√x2+1+x))
xy′+lny′=2y
So, the answer is option B