wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=cos-1 2x+2 cos-1 1-4 x2,-12<x<0, find dydx.

Open in App
Solution

Here, y=cos-12x+2 cos-11-4x2Put 2x=cosθ y=cos-1cos θ+2 cos-11-cos2θ y=cos-1cos θ+2 cos-1sinθ y=cos-1cos θ+2 cos-1cosπ2-θ ...iNow, -12<x<0 -1<2x<0 -1<cosθ<0 π2<θ<πAnd -π2>-θ>-π π2-π2>π2-θ>π2-π 0>π2-θ>-π2 -π2<π2-θ<0So, from equation i,y=θ+2-π2-θ Since, cos-1cosθ=θ, if θ0,π cos-1cosθ=-θ, if θ-π,0y=θ-2×π2+2θy=-π+3θy=-π+3cos-12x Since, 2x=cosθ

Differentiate it with respect to x using chain rule,

dydx=0+3-11-2x2ddx2xdydx=-31-4x2×2dydx=-61-4x2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Vector Addition
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon