Differentiation of Inverse Trigonometric Functions
If y =cos -11...
Question
Ify=cos−11−x21+x2thendydxatx=−2willbe
A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B Let’s first do it by putting x=tanθorθ=tan−1x Doing this we get y=cos−1(1−tan2θ)1+tan2θ . But, 1−tan2θ1+tan2θ=cos2θ (It’s a standard trigonometric identity). i.e.y=cos−1cos2θNowcos−1cosx=xi.e.cos−1cos2θ=2θSodydx=21+x2[Usingddx(tan−1x)=11+x2] The solution looks correct but it’s not. Look θ=tan−1x implies that −π2<θ<π2 Also cos−1cosx=x only when 0≤x≤π But observe that in the above solution we have used cos−1cosx=x for the entire domain which is not correct. Let’s correct it then. cos−1cos2θ=2θonlywhenθ≤2θ≤πor0≤θ≤π2 So for0≤θ≤π2, the domain of tan−1x i.e. x will be 0 to ∞ i.efor0≤θ≤π2,0≤x<∞ So the above result is correct only for positive x and is not correct for negative x. Also cos−1cos2θ=−2θif−π≤2θ<0or−π2≤θ<0i.e.,−∞<x<0 (Check the domain of tan−1xfor−π2≤θ<0) So for negative x cos−1cos2θ=−2θ=−2tan−1xi.e.forx<0y=−2tan−1xSodydx=−21+x2forx<021+x2forx≥0 To get its value at -2, we will put x = -2 in −21+x2because this is the derivate for x < 0. Sodydx∣∣x=−2=21+4=−25 Using chain Rule. y=cos−11−x21+x2dydx=1√1−(1−x21+x2)2×−2x(1+x2)−(1−x2)2x(1+x2)2 [Using chain rule and standard formula for derivative of cos−1x] =(1+x2)√(1+x2)2−(1+x2)2×2x.2(1+x2)2=4x√4x2(1+x2)=2x|x|(1+x2)=4x√4x2(1+x2)=2x|x|(1+x2)(Please note that √4x2=2|x|andnot2x) So dydx=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩−21+x2forx<0doesnotexistatx=021+x2whenx>0⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭ As|x|=xforx>0and−xforx<0