wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If y=cos1{2x31x213}, find dydx.

Open in App
Solution

Sol:
y=cos1{2x31x213}, To find dydx
put x=sinθ, Hence θ=sin+x
y=cos1{2sinθ31sin2θ13}
(1sin2θ=cos2θ)(sincesin2θ+cosθ=1)
y=cos1{2sin63cos2613}
y=cos1{2sin63cos613}(cos26=cos6)
y=cos1{213sin6213cosθ}
Now get 213=cosα,2313=sinα
sin2α+cos2α=(213)2+(313)2=413+313=1313=1
y=cos1{cosαsin6sinαcosθ}
Now [sin(θα)=sin6cosαcos6sinα]
y=cos1{sin(θα)}[cos(π2(θα))=sin(θα)]
y=cos1{cos(π2(θα))}
y=π/2(θα)[cos1(cosx)=x]
y=π/2(sin1xcos1213)
Now differente wrt x we have
dydx=011x20(cos1213=costan)
dydx=11x2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon