Sol:
y=cos−1{2x−3√1−x2√13}, To find dydx
put x=sinθ, Hence θ=sin+x
y=cos−1{2sinθ−3√1−sin2θ√13}
(1−sin2θ=cos2θ)(sincesin2θ+cosθ=1)
y=cos−1{2sin6−3√cos26√13}
y=cos−1{2sin6−3cos6√13}(cos26=cos6)
y=cos−1{2√13sin6−2√13cosθ}
Now get 2√13=cosα,23√13=sinα
⎡⎣sin2α+cos2α=(2√13)2+(3√13)2=413+313=1313=1⎤⎦
y=cos−1{cosαsin6−sinαcosθ}
Now [sin(θ−α)=sin6cosα−cos6sinα]
y=cos−1{sin(θ−α)}[cos(π2(θ−α))=sin(θ−α)]
y=cos−1{cos(π2(θ−α))}
y=π/2−(θ−α)[cos−1(cosx)=x]
y=π/2−(sin−1x−cos−12√13)
Now differente wrt x we have
dydx=0−1√1−x2−0(cos12√13=costan)
⇒dydx=−1√1−x2