Consider the given equation.
y=cos−1(x−x−1x+x−1)
y=cos−1(x2−1x2+1)
On differentiating w.r.t x, we get
dydx=−1√1−(x2−1x2+1)2
dydx=−(x2+1)√(x2+1)2−(x2−1)2
dydx=−(x2+1)√x4+1+2x2−(x4+1−2x2)
dydx=−(x2+1)√4x2
dydx=−(x2+1)2x
Hence, this is the answer.