y=cos−1x
⇒dydx=−1√1−x2=−(1−x2)−12
d2ydx2=ddx[−(1−x2)−12]
=−(−12)(1−x2)−32.ddx(1−x2)
= 12√1−x2)3×(2x)
⇒ d2ydx2=−x2√(1−x2)3 .....(i)
Now y=cos−1x⇒x=cosy
Putting x=cosy in equation (i), we obtain
d2ydx2=−cosy√(1−cos2y)3
=−cosysin3y
=−cosysiny×1sin2y
⇒ d2ydx2=−coty.cosec2y