wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=cos1x, find d2ydx2 in terms of y alone.

Open in App
Solution

y=cos1x
dydx=11x2=(1x2)12
d2ydx2=ddx[(1x2)12]
=(12)(1x2)32.ddx(1x2)
= 121x2)3×(2x)
d2ydx2=x2(1x2)3 .....(i)
Now y=cos1xx=cosy
Putting x=cosy in equation (i), we obtain
d2ydx2=cosy(1cos2y)3
=cosysin3y
=cosysiny×1sin2y
d2ydx2=coty.cosec2y

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon