If y=cos−1x, then find d2ydx2 in terms of y alone.
Given, y = cos−1x ⇒ x=cos y
Differentiating w.r.t. y, we get
dxdy=−sin y⇒ dydx=−cosec y ...(i)Again ,differentiating w.r.t. x,we getd2ydx2=ddx(−cosec y)=−(−cosec y cot y)dydx=cosec y cot y(−cosec y)=−cot y.cosec2y (from Eq. (i))