If y=cos(3cos−1x), then d2ydx2
24x
–24x
12x2
–12x2
y=cos(3 cos−1)=4x3−3x(cos3A=4cos3A−3 cosA)∴dydx=12x2−3d2ydx2=24x
If y=500e7x+600e−7x, show that d2ydx2=49 y.