The correct option is A 0
Given, y=cos(ax)
Then, y1=−a sin(ax)=a cos(π2+ax)
y2=−a2 cos(ax)=a2cos(2π2+ax)
y3=+a3 sin(ax)=a3cos(3π2+ax)
.
.
yn=ancos(nπ2+ax)
∴ The determinant Δ(x)=∣∣
∣∣yy1y2y3y4y5y6y7y8∣∣
∣∣
Δ(x)=∣∣
∣
∣
∣
∣
∣
∣∣cos axa cos(π2+ax)a2cos(2π2+ax)a3 cos(3π2+ax)a4cos(4π2+ax)a5cos(5π2+ax)a6cos(6π2+ax)a7 cos(7π2+ax)a8cos(8π2+ax)∣∣
∣
∣
∣
∣
∣
∣∣
Δ(x)=a3×a6∣∣
∣
∣∣cos(ax)−a sin(ax)−a2cos(ax)sin(ax)a cos(ax)−a2sin(ax)−cos(ax)a sin(ax)a2cos(ax)∣∣
∣
∣∣
R1→R1+R3
This gives Δ(x)=a9×(0)
Hence, Δ(x)=0