wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=cosax; then ∣ ∣yy1y2y3y4y5y6y7y8∣ ∣= where yτ=dτdxτy. Calculate the value of determinant.

A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 0
Given, y=cos(ax)
Then, y1=asin(ax)=acos(π2+ax)
y2=a2cos(ax)=a2cos(2π2+ax)
y3=+a3sin(ax)=a3cos(3π2+ax)
....................................................................................
....................................................................................
yn=ancos(nπ2+ax)
The determinant Δ(x)=∣ ∣yy1y2y3y4y5y6y7y8∣ ∣

Δ(x)=∣ ∣ ∣ ∣ ∣ ∣ ∣cosaxacos(π2+ax)a2cos(2π2+ax)a3cos(3π2+ax)a4cos(4π2+ax)a5cos(5π2+ax)a6cos(6π2+ax)a7cos(7π2+ax)a8cos(8π2+ax)∣ ∣ ∣ ∣ ∣ ∣ ∣

Δ(x)=a3×a6∣ ∣ ∣cos(ax)asin(ax)a2cos(ax)sin(ax)acos(ax)a2sin(ax)cos(ax)asin(ax)a2cos(ax)∣ ∣ ∣

{R1R1+R3} gives Δ(x)=a9×(0)
Hence, Δ(x)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Applications
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon