If y=cosnx.sinnxand dydx=n.cosn-1x×cosB then B is equals to ?
(n–1)x
(n+1)x
nx
(1–n)x
Explanation for the correct option:
Find the value of B:
Given functions,
y=cosnx.sinnx
Differentiate the function y=cosnx·sinnx with respect to x:
dydx=n·cosn–1x·(–sinx)·sinnx+ncosnx·cosnx(n)[∵d(cosx)dx=-sinx,d(sinx)dx=cosx]=ncosn–1x·sinnx·(–sinx)+ncosnxcosnx=ncosnx(–sinx·sinnx)cosx+cosnx=ncosnx(–sinxsinnx+cosxcosnx)cosx=n·cosn–1x·cos(x+nx)
Compare the obtained result with dydx=n.cosn-1x×cosB
B=x+nx=x(n+1)
Hence, the option (B) is the correct.
If m≠n and (m+n)−1 × (m−1 + n−1) = mxny, then x+y is equal to
Ify=bcoslogxnn, then dydx is equal to ?