wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=cos(sinx), show that:
d2ydx2+tanxdydx+ycos2x=0

Open in App
Solution

Given y=cos(sinx)

cos1y=sinx

Differentiating wrt x both sides we get ,

11y2dydx=cosx

dydx=1y2cosx

Differentiating wrt x both sides we get ,

d2ydx2=1y2sinx+cosxy1y2dydx

d2ydx2=sinx1y2cosxy1y21y2cosx

d2ydx2=1y2sinxycos2x

L.H.S =

d2ydx2+tanxdydx+ycos2x=1y2sinxycos2x+sinxcosx(1y2cosx)+ycos2x

d2ydx2+tanxdydx+ycos2x=0

= R.H.S

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon