wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(cosx)(cosx)cosx, then show that dydx=y2tanxy log(cosx)1

Open in App
Solution

We have, y=(cosx)(cosx)cosx

y=(cosx)ylog y=log(cosx)ylog y=y log(cosx)

On differentiating w.r.t. x, we get

1y.dydx=y.ddx(log (cosx))+log (cosx).dydx1y.dydx=ycosx.ddxcosx+log (cosx).dydxdydx[1ylog (cosx)]=ysinxcosx=ytanxdydx=y2tanx(1y log (cosx))=y2tanxy log (cosx)1


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon