If y=cot-11+x1-x, then dydx equals to?
11+x2
-11+x2
21+x2
-21+x2
Explanation for the correct option:
Finding the value of dydx:
Given function,
y=cot-11+x1-x
Put x=tanθ in the given function,
θ=tan-1x
y=cot-11+tanθ1-tanθ=cot-1tanπ/4+tanθ1-tanπ4tanθ[∵tanπ4=1]=cot-1tanπ4+θ[∵tan(A+B)=tanA+tanB1-tanAtanB]=cot-1cotπ2-π4+θ[∵tanA=cotπ2-A]=π4-θ=π4–tan-1x
Differentiate the obtained function with respect to x
dydx=-11+x2
Hence, option (B) is correct.
If x√(1+y)+y√(1+x)=0. then dydx equals -