If y=2sinθ+√3cosθ, then the minimum value of y(θ∈[0,π2]) is
Y=2sinθ+√3cosθ
Y→min;
sinθ+√3cosθ→max
G(θ)=cosθ−√3sinθ
tanθ=1√3;
θ=30∘
G(30∘)=12+√3.√32=2
Ymin=2G(30∘)=22=1