If n∈Q−W, we know that
(1−x)−n=1+nx+n(n+1)2!x2+n(n+1)(n+2)3!x3+⋯
Given y=75(1+1102+1⋅31⋅21104+1⋅3⋅51⋅2⋅31106+⋯∞)
=75(1+1102+1⋅(1+2)1⋅21104+1⋅(1+1⋅2)⋅(1+2⋅2)1⋅2⋅31106+⋯∞)
=75⎛⎜
⎜
⎜
⎜⎝1+121!(2102)+12⋅(12+1)2!(2102)2+12⋅(12+1)⋅(12+2)3!(2102)3+⋯⎞⎟
⎟
⎟
⎟⎠
=75[(1−2100)−1/2]
=7⋅105⋅√98=√2
∴ 4y2=8