If y=ax2(x−a)(x−b)(x−c)+bx(x−b)(x−c)+cx−c+1, then y′y is equal to (Here,y′=dydx)
A
1x(aa−x+bb−x+cc−x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1x(ba−x+cb−x+ac−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
abcx(aa−x+bb−x+cc−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1x(bca−x+acb−x+abc−x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1x(aa−x+bb−x+cc−x) y=ax2(x−a)(x−b)(x−c)+bx(x−b)(x−c)+cx−c+1⇒y=ax2(x−a)(x−b)(x−c)+bx(x−b)(x−c)+xx−c⇒y=ax2(x−a)(x−b)(x−c)+x2(x−b)(x−c)⇒y=x3(x−a)(x−b)(x−c)
Taking log on both sides, we get logy=3logx−[log(x−a)+log(x−b)+log(x−c)]
On differentiating with respect to x, we get 1ydydx=3x−[1x−a+1x−b+1x−c]⇒y′y=(1x−1x−a)+(1x−1x−b)+(1x−1x−c)⇒y′y=−(ax(x−a))−(bx(x−b))−(cx(x−c))∴y′y=1x(aa−x+bb−x+cc−x)