wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=cosxsinxcosx+sinx, show that dydx+y2+1=0.

Open in App
Solution

Given that,
y=cosxsinxcosx+sinx

on rationlize
y=(cosxsinxcosx+sinx)×(cosxsinxcosxsinx)

y=(cosxsinx)2cos2xsin2x

y=cos2x+sin2x2sinxcosxcos2x

y=1sin2xcos2x

y=1cos2xsin2xcos2x

y=sec2xtan2x

on diff. and we get

dydx=ddx(sec2xtan2x)

=sec2xtan2x×2sec22x×2

=2sec2xtan2x2sec22x

now, L.H.S.

dydx+y2+1

2sec2xtan2x2sec22x+(sec2xtan2x)2+1

2sec2xtan2x2sec22x+sec22x+tan22x2sec2xtan2x+1

sec22x+tan22x+1

(sec2+tan22x)+1

sec2Atan2A=1

1+1=0
R.H.S.
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon