wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=1sin4a+11+sin4A1, then one of the values of y is

A
tanA
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
cotA
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
tan(π4+A)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
cot(π4+A)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A tanA
B cotA
C tan(π4+A)
D cot(π4+A)
y=(cos2Asin2A)2+1(cos2A+sin2A)21y=±(cos2Asin2A)+1±(cos2A+sin2A)1
So y1,y2,y3,y4 are the four values of y
Then
y1=cos2Asin2A+1cos2A+sin2A1=(1+cos2A)sin2A(cos2A1)+sin2A
=2cos2A2sinAcosA2cos2A+2sinAcosA=cosA(cosAsinA)sinA(cosAsinA)=cotA
y2=(cos2Asin2A)+1(cos2Asin2A)1=(1+cos2A)+sin2A(cos2A1)sin2A
=2sin2A+2sinAcosA2cos2A2sinAcosA=tanA
y3=(cos2Asin2A)+1(cos2Asin2A)1=(1+cos2A)sin2A(cos2A1)sin2A
=2cos2A2sinAcosA2cos2A2sinAcosA=cosAsinAcosA+sinA=1tanA1+tanA
=tan(π4A)=cot(π4+A)
y4=(cos2Asin2A)+1(cos2Asin2A)1=(1+cos2A)+sin2A(cos2A1)+sin2A
=2sin2A+2sinAcosA2sin2A+2sinAcosA=cosA+sinAcosAsinA=1+tanA1tanA=tan(π4+A)
Hence, all the options are correct.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon