wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=xsin1x1x2+log1x2 then prove that

dydx=x1x2+sin1x(1+x2)2x(1x2)1x2(1x2)

Open in App
Solution

Take u=xsin1x1x2

dudx=1x2ddx(xsin1x)xsin1xddx(1x2)(1x2)2

=1x2[x1x2+sin1x]xsin1x(2x1x2)(1x2)

=x+1x2sin1x+2x2sin1x1x2(1x2)

=x1x2+(1x2)sin1x+2x2sin1x(1x2)1x2

=x1x2+sin1x+x2sin1x(1x2)1x2

=x1x2+sin1x+x2sin1x(1x2)1x2

Let v=log1x2dvdx=(2x)1x2

dydx=dudx+dvdx

dydx=x1x2+sin1x(1+x2)2x(1x2)1x2(1x2).

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon