If y=x+1(x−1)(x−2)(x−3), then yn=
2(x−1)−(x−2)+(x−2)−(x−3)(x−1)(x−2)(x−3)
2(x−2)(x−3)−1(x−1)(x−2)
2((x−2)(x−3))(x−2)(x−3)−(x−1)(x−2)(x−1)(x−2)
2(x−3)−2(x−2)−1(x−2)+1(x−1)
y=−2(x−3)−3(x−2)+1(x−1)
y1=−2(x−3)2+3(x−2)2+1(x−1)2
y11=+2!2(x−3)3+2!3(x−2)3+2!(x−1)3
y111=−3!2(x−3)4+3!3(x−2)4+3!(x−1)4
yn=(−1)nn!(2(x−3)n+1−3(x−2)n+1+1(x−1)n+1)