The correct option is C y=3π16
y=sin2x∫1/8sin−1√tdt+cos2x∫1/8cos−1√tdt...(1)
dydx=sin−1√sin2x.2sinxcosx+cos−1√cos2x.(−2cosxsinx)
=2xsinxcosx−2xsinxcosx
⇒dydx=0 ∀ x∈[0,π2]
∴ The curve in equation (1) is a straight line parallel to the x−axis.
Now, since y is constant, it is independent of x.
So let's select any x, say x=π4 (convenient value)
y=1/2∫1/8sin−1√tdt+1/2∫1/8cos−1√tdt=1/2∫1/8(sin−1√t+cos−1√t)dt=1/2∫1/8π2dt=π2[12−18]=3π16
Therefore, equation of the line is y=3π16.