wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=em.cos1x, prove that :
(1x2)d2ydx2xdydx=m2y

Open in App
Solution

Given : y=emcos1x ...(i)

Differentiating (i), w.r.t. x, we get
dydx=emcos1x.m(11x2)
1x2dydx=my [Using (i)]
(1x2)(dydx)2=m2y2

Differentiating again w.r.t. x, we get
(1x2)2.dydxd2ydx2+(dydx)2.(2x)=m22ydydx

(1x2)d2ydx2xdydx=m2y

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon